Two New Styryllactones from Goniothalamus cheliensis

Si WANG, Sheng Jun DAI, Ruo Yun CHEN, Shi Shan YU, De Quan YU*

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: Two new styryllactones, iso-goniopypyrone and 8-acetyl-9-deoxygoniopypyrone, were isolated from the roots of *Goniothalamus cheliensis*. Their structure were elucidated on the basis of spectroscopic and chemical evidences.

Keywords: Goniothalamus cheliensis, iso-goniopypyrone, 8-acetyl-9-deoxygoniopypyrone.

Goniothamus cheliensis Hu belongs to the genus Goniothalamus of the family Annonaceace, distributed in Yunnan Province, Southwest of China¹. Styryllactones, alkaloids, flavonoids, and goniolactones were isolated from the title plant in our previous phytochemical investigation¹⁻². As reported as a sequel, we describe elucidation of the structures of two new styryllactone, iso-goniopypyrone (1) and 8-acetyl-9-deoxygoniopypyrone (2) isolated from this plant in this paper.

Figure 1 Structures for 1 and 2

Compound **1** was isolated as white crystals, mp 201-202°C, $[\alpha]_D^{23}$ +14 (c 0.21, MeOH). Its molecular formula was determined as $C_{13}H_{14}O_6$ by HREIMS, m/z 250.083 $[M]^+$ (calcd. 250.0841). The IR spectrum (KBr, cm⁻¹) exhibited absorption bands for (3516, 3477, and 3375), saturated δ -lactone (1759 and 1028) and phenyl (1610 and 1497).

The 1H NMR data for **1** was very similar to those of goniopypyrone except for the coupling constants between H-7 and H-8 and their peak shapes (see **Table 1**) revealing that compound **1** was a stereoisomer of goniopypyrone. The signals for H-8 (δ 4.78) and H-6 (δ 4.41) showed NOE enhancements when H-7 (δ 3.90) was irradiated, which suggested that H-6, H-7 and H-8 were β -oriented, however, no NOE enhancements of the signals for H-5 α (δ 4.60) was observed when H-8 irradiated indicating that H-5 was

_

^{*}E-mail: dqyu@imm.ac.cn

 α -oriented, this was in accordance with the orientation of the analogous chiral carbon in goniopyrone.

Table 1 ¹ H (500MHz) and	¹³ C (125MHz) NMR Spectral Data f	for 1 in CD ₃ OD and 2 in CDCl ₃
-------------------------------------	--	--

	1		2	
Position	δ_{H}	δ_{C}	δ_{H}	$\delta_{\rm C}$
1			4.82, m	72.5
2		178.6		
3α	2.45, d, (17.5)	40.9		169.0
3β	2.93, dd, (17.5, 5.0)			
4	4.53, t, (5.0)	68.7	2.91, dd, (18.0, 5.1)	36.2
			3.03, d, 18.0	
5	4.60, dd, (7.0, 5.0)	88.3	4.59, brs	66.9
6	4.41, d, (7.0)	70.3		
7	3.90, d, (8.0)	74.4	5.02, d, (2.1)	68.2
8	4.78, d, (8.0)	75.3	5.21, d, (2.1)	69.4
9			1.92, dd, (14.5, 4.0)	24.8
			2.50, dt, (14.5, 2.0)	
1'		144.2		136.4
2' (6')	7.46, m	128.1	7.32, m	126.3
3' (5')	7.36, m	128.4	7.29, m	128.1
4′ ` ′	7.28, m	128.4	7.29, m	128.0
AcO			1.83, s	20.4, 168.5

Compound **2** was obtained as a white powder, mp 194-196°C, $[\alpha]_D^{23}$ +21 (c 0.23, CHCl₃). Its molecular formula was assigned as $C_{13}H_{14}O_6$ on the basis of HREIMS at m/z 276.0985 [M]⁺ (calcd. 276.0997). The IR spectrum (KBr, cm⁻¹) displayed absorption bands for hydroxyl (3465), saturated δ -lactone (1743 and 1086) and aromatic ring (1608 and 1496). A preliminary examination of the ¹H NMR data of **2** revealed that **2** was styryllactone-type compound (see **Table 1**). Comparison of the ¹H NMR data of **2** with those of 9-deoxygoniopypyrone showed that an acetoxyl was present in **2** in place of a hydroxyl at C-8 in 9-deoxygoniopypyrone. In **2**, the resonances for the protons at δ 1.83 (s, 3H) and the carbons at 168.5 and 20.4 showed the presence of an acetyl, and H-8 was shifted downfield by 1.24 ppm. The ¹H NMR data and the TLC R_f value of acetylate of 9-deoxygoniopypyrone were identical to **2**, which further supported that **2** is an acetyl derivative of 9-deoxygoniopypyrone.

References

- 1. S. Wang, P. C. Zhang, R. Y. Chen, D. Q. Yu, Chin. Chem. Lett., 2001, 12, 787.
- 2. S. Wang, Y. J. Zhang, R. Y. Chen, D. Q. Yu, J. Nat. Prod., 2002 (in press).
- 3. X. P. Fang, J. E. Anderson, C. J. Chang, P. E. Fanwick, J. L. Mclaughlin, *Chem.Soc. Perkin Trans I*, 1990, 1655.
- 4. T. K. M. Shing, H. C. Tsui J. Chem. Soc. Chem. Commun., 1992, 432.

Received 20 June, 2002